The Trophic Hypothesis: Long-Term Trends in Wading Bird Prey Species in the Freshwater Everglades

Joel Trexler, Jeff Kline, Joe Parkos, and Bill Loftus

Overview

- 1. Contributions to the Trophic Hypothesis
- Effects of increasing disturbance frequency and decreasing ecosystem size on trends in total fish biomass
- 3. Long-term trends in fish community structure and turnover rate
 - Abrupt vs. gradual change
 - directionally or non-directionally?

Trophic Hypothesis

- Why monitor fish and crustaceans?
- Sampling integrated with prey concentration project (FAU)
- Documents linkage with wading bird nesting success

Sampling Methodology

- Sampling method
 - Small fish: 1 m² throw trap
 - 5 or 7 samples /plot
 - July, Oct, Dec, Feb, April
 - 32,948 samples total

Disturbance Dynamics

Wet Season

Dry Season

Ecosystem Size and Concentration

Long-Term Trends in Hydrology

- Probability of drying increased at study sites in ENP
 * after accounting for rainfall
- Summed area flooded (ecosystem size) has decreased

Long-Term Trends in Biomass

- Generalized Linear Mixed Model (GLMM)
- Parameters: Depth, DSD,
 Expansion/Recession Rate,
 Season

Long-Term Trends in Biomass

- Same three sites
- GLMM residuals fitted w/ piecewise regression
- Significant trends present after accounting for local hydrology
- Additional time series analysis in talk by James Herrin at 4:15 in Sandpiper Room

Biomass Summary (1996-2012)

- After accounting for local hydrology, fish biomass declined significantly at:
 - 4 of 6 (67%) sites in SRS
 - 2 of 3 (67%) sites in TSL
 - 2 of 6 (33%) sites in WCA 3A
- Average regional decline:
 - -11.2% in TSL
 - -9.50% in SRS
 - -3.77% in WCA 3A

Long-Term Trends in Community Composition

Shark River Slough & Taylor Slough

Long-Term Trends in Community Composition

Water Conservation Area

Significant directional change at:

- 3 (50%) sites in SRS
- 2 (67%) sites in TSL
- 3 (50%) sites in WCA

Large fish collected by marsh electrofishing

- All species summed.
 Mostly Florida gar,
 warmouth,
 largemouth bass,
 lake chubsuckers
- Residuals from grand mean (highest CPU in WCA, lowest in TS)

Large fish collected by marsh electrofishing

- All species summed.
 Mostly Florida gar,
 warmouth, largemouth
 bass, lake chubsuckers
- Residuals from model with days since last dry (DSD)

Conclusions

- 1. Ecologically important reductions in fish and crayfish biomass in Shark River and Taylor Sloughs, not WCA 3 (south of Alligator Alley... north of AA is deteriorating fastest in dataset).
- 2. Changes mostly from decreasing density rather than average size of fish, however. Changes in crayfish species composition.
- 3. Gradual, directional composition change;
- 4. Declines can not just be explained by shortened hydroperiod.
 - Flow from built system is primary driver of hydrology at study sites
 - Increased frequency of disturbance and decreasing ecosystem size

Acknowledgements

- Support from the NPS, Dave Sikkema, Jeff Kline, Agnes Mclean - ENP
- Jana Newman, Andy Gottlieb SFWMD
- Doug Donalson, Andy LoSchiavo, Melissa Nausuti - USACE
- Many graduate, undergraduate students & technicians

